Posted tagged ‘Gemini Observatory’

Prom Night In The Cosmos/My High School Wasn’t Like This

March 31, 2011

A bit of (not quite) random beauty — and a lovely story parsecs from politics — for your morning pleasure:

(Link to a big  tiff here.)

The story:  This image is the winner in the second annual contest the Gemini Observatory runs for Australian high school students, in which teams identify objects in the night sky that could yield images of both scientific interest and sheer gorgeousness.  The students have to submit an essay defending their choice of object, and this year’s winners, five young women from the Sydney Girls High School, proposed taking a picture of a system of colliding galaxies* with the following scientific rationale:

“If enough colour data is obtained in the image it may reveal easily accessible information about the different populations of stars, star formation, relative rate of star formation due to the interaction, and the extent of dust and gas present in these galaxies.”

As the Gemini press release went on to report, the team also argued for, in essence, the transformative value of art  in the form of the artistry inherent in great works of science:

When viewers consider this image “in contrast to their daily life,” the team explained, “there is a significant possibility of a new awareness or perception of the age and scale of the universe, and their part in it.”

The data for this image were gathered by the Gemini South telescope — an eight meter monolithic mirror telescope of exceptional optical quality — using one of its primary instruments, a multi-object spectrograph in its imaging mode, serving as a camera.

As for the analysis of what we are actually seeing above, the Gemini press office writes:

The primary galaxy in the image (NGC 6872) exemplifies what happens when galaxies interact and their original structure and form is distorted. When galaxies like these grapple with each other, gravity tugs at their structures, catapulting spiral arms out to enormous distances. In NGC 6872, the arms have been stretched out to span hundreds of thousands of light-years—many times further than the spiral arms of our own Milky Way galaxy. Over hundreds of millions of years, NGC 6872’s arms will fall back toward the central part of the galaxy, and the companion galaxy (IC 4970) will eventually be merged into NGC 6872. The coalescence of galaxies often leads to a burst of new star formation. Already, the blue light of recently created star clusters dot the outer reaches of NGC 6872’s elongated arms. Dark fingers of dust and gas along the arms soak up the visible light. That dust and gas is the raw material out of which future generations of stars could be born.

So, who cares if our current politics is a social-engineering test-to-destruction experiment?  In galaxies far, far, away, they’re getting ready to restart the tape and try again.

You may consider this a cosmic open thread.

*For more images of colliding galaxies — surely some of the coolest objects in the sky — check out this collection of Hubble images.

Why You Should Want To Be An Astronomer…

March 27, 2010

You get the chance to make images like this one:

This is the Owl Nebula — a planetary nebula* visible in the Northern Hemisphere in the constellation Ursa Major.  It gets its name from the two dark “eyes” visible more or less along the center line of the image, which to the poetic soul that lives in skywatchers, gives it the look of an owl’s face.  It was made at the Gemini North telescope, an eight-meter class monolith at what is perhaps the best single observing site for optical astronomy in the world, the summit of Mauna Kea in Hawaii.

The image was produced for the observing program of an atypical user of a major telescope:  Émilie Storer, a student at Collège Charlemagne, Pierrefonds, Quebec.  Storer was this year’s winner of an annual competition sponsored by the Gemini Observatory, asking high schoolers to write an essay about their favorite object in the sky, and why one of  the Gemini telescopes should observe it.

In this case, Storer’s choice prompted Gemini’s scientists to create the best available large-telescope data set on this planetary nebula, and thus reveal significant structure within what had previously been thought to be a quite simple ball. Details in the Gemini Observatory press release.

I’ve long been a fan of planetary nebulae — you can see a couple in the opening sequence to a film I made, and, as of this writing, 204 more in the archives (search for “planetary nebula) of the invaluable Astronomy Picture of the Day archive.  They are beautiful to look at, and, the more you know about them, poignant too — a terribly short lived passage in the life of a star, an eruption of splendor, swiftly to be eclipsed by a dwindling of the light.

And I’ve long been a fan of big telescopes on big mountains, and anything that gets people to know and love them.  I’ve made a couple of films centering on large ‘scopes, and have spent a lot of time trying to remain sufficiently oxygenated to remember when to turn the camera on and when to call “cut.”  I have a particular affection for Gemini North, as it happens, because I had the enormous good fortune to go to the Corning factory in upstate New York as they were finishing and shipping the eight meter mirror blank off to France for polishing.

What I saw was twenty ton contact lens, slumped into the rudiments of its curved shape, and through the generosity of both Corning and the Gemini team, I and my collaborator Larry Klein were able to make one of the most spectacular purely visual scenes we’ve ever shot — images of the giant blank, lit blue from below, being gently swept by a pair of moon-bootied men, to be followed by the amazing slow dance of lifting the mirror up and into its crate.  Doesn’t sound like much on the page, and that film “Cathedrals of the Sky,” is almost unobtainable now, but trust me, it was great.

But I digress.  This is just a post for a weekend to give kudos to Ms. Storer and to the Gemini Observatory — and to enjoy a break from the craziness that has overtaken this blog and our country.  Here, after all, is a glimpse of genuinely beauty that could not be less implicated in any trouble and strife here on the mote of dust we call home.

*Planetary nebulae, despite the name, are the products of a late phase in the life cycle of certain stars.  Larger stars — above 8 times the mass of the sun — tend to blow up in spectacular events called supernovae.  Lighter stars at the end of their lives don’t undergo the cataclysmic collapse and explosion of their massive  cousins (as long as they are not part of a distinct class of stars below 1.38 solar masses that under very specific conditions produce what are known as type 1A supernovae).  Instead, as such stars begin run out of hydrogen as fuel for fusion reactions and begin to burn helium (while remaining hydrogen stocks continue to fuse).  As the stars core heats up as the more intense helium fusion reactions take over, it becomes less stable (the actual dynamics are ferociously more complicated than this cartoon) and the star begins to blow off its outer atmosphere in a series of concentric shells.  Those expanding spheres of gas form the beautiful shapes and colors we detect as planetary nebulae.